UG Element Math Solutions Part 3

Elements of Mathematics Solutions for Class 11th ( Part – 3 ) – Unbox Goodies

Hey guys, are you one of them who searching for “Elements of Mathematics: Foundation by jeevansons publications” Solutions or you can say Element math solution for a long time and didn’t get it from any where yet so your wait is over now because we are here with complete ‘Element Math Solution’ for class 11th and there is no need of worry for the students of other classes because we upload a different sets of element math solution by jeevansons publication soon of their respective classes it’s on way.

As a student of Class 11th, you might find Mathematics to be a challenging subject. However, with the right guidance and study material, you can ace this subject with ease. The “Element of Mathematics Solutions” is an excellent resource for students who are looking to strengthen their foundation in Mathematics.

How to get All Chapters Solutions of Elements of Math?

In the series of class 11th you got all the exercises of chapters in the form of parts like part 1, part 2, part 3, etc. If you have any query, problem or you want to ask some question related to elements mathematics solutions of class 11th or have some suggestion which you want to share with us you just go through the comment box which is just placed below the post it’s help us for providing you a better service and we replying your questions, queries or suggestion related to element of mathematics solution for class 11th as soon as possible.

Join Telegram Channel All Updates Coming there

We providing you a genuine study material which has been checked and verified by our professionals. Now days, Students are struggling with their exams and they didn’t get the genuine and complete study material, so due to on the continuous demand of students we bring these complete element math solution which you get in free of cost.

If you want get notified for all our posts or study material which we are uploading in future you just subscribe/follow us through below given subscribe/follow box. This is the only site in which you can believe without any thinking. The main and the most important aim of the site is to overcome the pressure of the students for getting accurate study material for the preparation of their exams.

Elements of Math Solutions for other Classes ( Like Class 9th, 10th, 12th ) ?

Our team also working for other classes Mathematics Solutions like for 9th class, 10th class, 11th class, 12th class and also for bachelor degrees so stay in touch with us by subscribe/follow us by this you will get notified on your email when we upload a new post in future.

How to get Solutions of Elements of Mathematics Solutions?

All Solutions of Elements of Mathematics for All classes are coming soon on this website, So join our are Telegram Channel to get Notify when we upload a new post on website and we also provide a giveaways on our Telegram Channel So you can also participate on it by Joining our Telegram channel.

Solutions Start From Here ( Part – 3 )

(i)\text{sine}\theta (written as \text{sin}\theta ) =\frac{{\text{ }\!\!~\!\!\text{ perpendicular }\!\!~\!\!\text{ }}}{{\text{ }\!\!~\!\!\text{ hypotenuse }\!\!~\!\!\text{ }}}=\frac{y}{r}


(ii) \text{cosine}\theta ( written as \text{cos}\theta )=\frac{{\text{ }\!\!~\!\!\text{ base }\!\!~\!\!\text{ }}}{{\text{ }\!\!~\!\!\text{ hypotenuse }\!\!~\!\!\text{ }}}=\frac{x}{r}


(iii) tangent \theta (written as \text{tan}\theta ) =\frac{{\text{ }\!\!~\!\!\text{ perpendicular }\!\!~\!\!\text{ }}}{{\text{ }\!\!~\!\!\text{ base }\!\!~\!\!\text{ }}}=\frac{y}{x}


(iv) \text{cotangent}\theta (written as \text{cot}\theta )=\frac{{\text{ }\!\!~\!\!\text{ base }\!\!~\!\!\text{ }}}{{\text{ }\!\!~\!\!\text{ perpendicular }\!\!~\!\!\text{ }}}=\frac{x}{y}


(v) \text{secant}\theta ( written as \text{sec}\theta )=\frac{{\text{ }\!\!~\!\!\text{ hypotenuse }\!\!~\!\!\text{ }}}{{\text{ }\!\!~\!\!\text{ base }\!\!~\!\!\text{ }}}=\frac{r}{x}


(vi) \text{cosecant}\theta (written as \text{cosec}\theta )=\frac{{\text{ }\!\!~\!\!\text{ hypotenuse }\!\!~\!\!\text{ }}}{{\text{ }\!\!~\!\!\text{ perpendicular }\!\!~\!\!\text{ }}}=\frac{r}{y}


Here, we also recall some important identities of trigonometric ratios.


(1) \text{tan}\theta =\frac{{\text{sin}\theta }}{{\text{cos}\theta }}


(2) \text{cot}\theta =\frac{{\text{cos}\theta }}{{\text{sin}\theta }}


(3) \text{cosec}\theta =\frac{1}{{\text{sin}\theta }}


(4) \text{sec}\theta =\frac{1}{{\text{cos}\theta }}


(5) \text{cot}\theta =\frac{1}{{\text{tan}\theta }}


(6) \text{si}{{\text{n}}^{2}}\theta +\text{co}{{\text{s}}^{2}}\theta =1 i.e., \text{si}{{\text{n}}^{2}}\theta =1-\text{co}{{\text{s}}^{2}}\theta i.e., \text{co}{{\text{s}}^{2}}\theta =1-\text{si}{{\text{n}}^{2}}\theta .


(7) 1+\text{ta}{{\text{n}}^{2}}\theta =\text{se}{{\text{c}}^{2}}\theta i.e., \text{se}{{\text{c}}^{2}}\theta -\text{ta}{{\text{n}}^{2}}\theta =1 i.e., \text{ta}{{\text{n}}^{2}}\theta =\text{se}{{\text{c}}^{2}}\theta -1


(8) 1+\text{co}{{\text{t}}^{2}}\theta =\text{cose}{{\text{c}}^{2}}\theta i.e., \text{cose}{{\text{c}}^{2}}\theta -\text{co}{{\text{t}}^{2}}\theta =1 i.e., \text{co}{{\text{t}}^{2}}\theta =\text{cose}{{\text{c}}^{2}}\theta -1.

 

Example 1. Prove the following:


(i) \text{si}{{\text{n}}^{4}}\theta -\text{co}{{\text{s}}^{4}}\theta =\text{si}{{\text{n}}^{2}}\theta -\text{co}{{\text{s}}^{2}}\theta


(ii) \text{si}{{\text{n}}^{6}}\theta +\text{co}{{\text{s}}^{6}}\theta =1-3\text{si}{{\text{n}}^{2}}\theta \text{co}{{\text{s}}^{2}}\theta


Solution.

(i) L.H.S.

=\text{si}{{\text{n}}^{4}}\theta -\text{co}{{\text{s}}^{4}}\theta

 

={{\left( {\text{si}{{\text{n}}^{2}}\theta } \right)}^{2}}-{{\left( {\text{co}{{\text{s}}^{2}}\theta } \right)}^{2}}

 

=\left( {\text{si}{{\text{n}}^{2}}\theta +\text{co}{{\text{s}}^{2}}\theta } \right)\left( {\text{si}{{\text{n}}^{2}}\theta -\text{co}{{\text{s}}^{2}}\theta } \right)

 

=\text{si}{{\text{n}}^{2}}\theta -\text{co}{{\text{s}}^{2}}\theta =\text{ }\!\!~\!\!\text{ R}.\text{H}.\text{S}.\text{ }\!\!~\!\!\text{ }\left[ {\because \text{si}{{\text{n}}^{2}}\theta +\text{co}{{\text{s}}^{2}}\theta =1} \right]

 

\text{(ii) }\!\!~\!\!\text{ }\!\!~\!\!\text{ }\!\!~\!\!\text{ L}\text{.H}\text{.S}\text{. }\!\!~\!\!\text{ = }\!\!~\!\!\text{ si}{{\text{n}}^{6}}\theta +\text{co}{{\text{s}}^{6}}\theta

 

=~{{\left( {\text{si}{{\text{n}}^{2}}\theta } \right)}^{3}}+{{\left( {\text{co}{{\text{s}}^{2}}\theta } \right)}^{3}}

 

=~{{\left( {\text{si}{{\text{n}}^{2}}\theta } \right)}^{2}}-{{\left( {\text{co}{{\text{s}}^{2}}\theta } \right)}^{2}}

 

=~\left( {\text{si}{{\text{n}}^{2}}\theta +\text{co}{{\text{s}}^{2}}\theta } \right)\left( {\text{si}{{\text{n}}^{2}}\theta -\text{co}{{\text{s}}^{2}}\theta } \right)

 

={{\left( {\text{si}{{\text{n}}^{2}}\theta +\text{co}{{\text{s}}^{2}}\theta } \right)}^{3}}-3\text{si}{{\text{n}}^{2}}\theta \text{co}{{\text{s}}^{2}}\theta \left( {\text{si}{{\text{n}}^{2}}\theta +\text{co}{{\text{s}}^{2}}\theta } \right)

 

=1-3\text{si}{{\text{n}}^{2}}\theta \text{co}{{\text{s}}^{2}}\theta =\text{ }\!\!~\!\!\text{ R}.\text{H}.\text{S}.\text{ }\!\!~\!\!\text{ }\!\!~\!\!\text{ }\left[ {\because \text{si}{{\text{n}}^{2}}\theta +\text{co}{{\text{s}}^{2}}\theta =1} \right]

 

={{\left( {\text{si}{{\text{n}}^{2}}\theta } \right)}^{3}}+{{\left( {\text{co}{{\text{s}}^{2}}\theta } \right)}^{3}}

 

={{\left( {\text{si}{{\text{n}}^{2}}\theta +\text{co}{{\text{s}}^{2}}\theta } \right)}^{3}}-3\text{si}{{\text{n}}^{2}}\theta \text{co}{{\text{s}}^{2}}\theta \left( {\text{si}{{\text{n}}^{2}}\theta +\text{co}{{\text{s}}^{2}}\theta } \right)

 

=1-3\text{si}{{\text{n}}^{2}}\theta \text{co}{{\text{s}}^{2}}\theta = R.H.S. \left[ {\because \text{si}{{\text{n}}^{2}}\theta +\text{co}{{\text{s}}^{2}}\theta =1} \right]

 

Example 2. Prove that :


(i) \text{ta}{{\text{n}}^{2}}\theta -\text{si}{{\text{n}}^{2}}\theta =\text{ta}{{\text{n}}^{2}}\theta \text{si}{{\text{n}}^{2}}\theta


(ii) \frac{{1-\text{ta}{{\text{n}}^{2}}\text{ }\!\!~\!\!\text{ A}}}{{1+\text{ta}{{\text{n}}^{2}}\text{ }\!\!~\!\!\text{ A}}}=\text{co}{{\text{s}}^{2}}\text{ }\!\!~\!\!\text{ A}-\text{si}{{\text{n}}^{2}}\text{ }\!\!~\!\!\text{ A}

 

(iii) \frac{{\text{tan}\theta -\text{cot}\theta }}{{\text{sin}\theta \text{cos}\theta }}=\text{se}{{\text{c}}^{2}}\theta -\text{cose}{{\text{c}}^{2}}\theta


(iv) \frac{{\text{cosec}\theta }}{{\text{cot}\theta +\text{tan}\theta }}=\text{cos}\theta .


Solution. (i) L.H.S. =\text{ta}{{\text{n}}^{2}}\theta -\text{si}{{\text{n}}^{2}}\theta

 

=\frac{{\text{si}{{\text{n}}^{2}}\theta }}{{\text{co}{{\text{s}}^{2}}\theta }}-\text{si}{{\text{n}}^{2}}\theta =\frac{{\text{si}{{\text{n}}^{2}}\theta -\text{si}{{\text{n}}^{2}}\theta \text{co}{{\text{s}}^{2}}\theta }}{{\text{co}{{\text{s}}^{2}}\theta }}

 

=\frac{{\text{si}{{\text{n}}^{\text{*}}}\theta \left( {1-\text{co}{{\text{s}}^{2}}\theta } \right)}}{{\text{co}{{\text{s}}^{2}}\theta }}=\frac{{\text{si}{{\text{n}}^{2}}\theta }}{{\text{co}{{\text{s}}^{2}}\theta }}\cdot \text{si}{{\text{n}}^{2}}\theta

 

\begin{array}{*{20}{r}} {} & {} \\ {} & {} \\ {} & {~=\text{ta}{{\text{n}}^{2}}\theta \text{si}{{\text{n}}^{2}}\theta =\text{ }\!\!~\!\!\text{ R}.\text{H}.\text{S}.\text{ }\!\!~\!\!\text{ }} \end{array}

 

(ii) L.H.S. =\frac{{1-\text{ta}{{\text{n}}^{2}}\text{ }\!\!~\!\!\text{ A}}}{{1+\text{ta}{{\text{n}}^{2}}\text{ }\!\!~\!\!\text{ A}}}

 

=\frac{{1-\frac{{\text{si}{{\text{n}}^{2}}\text{ }\!\!~\!\!\text{ A}}}{{\text{co}{{\text{s}}^{2}}\text{ }\!\!~\!\!\text{ A}}}}}{{1+\frac{{\text{si}{{\text{n}}^{2}}\text{ }\!\!~\!\!\text{ A}}}{{\text{co}{{\text{s}}^{2}}\text{ }\!\!~\!\!\text{ A}}}}}

 

=\frac{{\text{co}{{\text{s}}^{2}}\text{ }\!\!~\!\!\text{ A}-\text{si}{{\text{n}}^{2}}\text{ }\!\!~\!\!\text{ A}}}{{\text{co}{{\text{s}}^{2}}\text{ }\!\!~\!\!\text{ A}+\text{si}{{\text{n}}^{2}}\text{ }\!\!~\!\!\text{ A}}}


=\text{co}{{\text{s}}^{2}}\mathbf{A}-\text{si}{{\text{n}}^{2}}\mathbf{A}= R.H.S.

 

\text{ }\!\!~\!\!\text{ }\left[ {\because \text{co}{{\text{s}}^{2}}A+\text{si}{{\text{n}}^{2}}A=1} \right]

 

(iii) \text{L}\text{.H}\text{.S}\text{. }\!\!~\!\!\text{ }~=\frac{{\text{tan}\theta -\text{cot}\theta }}{{\text{sin}\theta \text{cos}\theta }}

 

=\frac{{\frac{{\text{sin}\theta }}{{\text{cos}\theta }}}}{{\text{sin}\theta \text{cos}\theta }}-\frac{{\frac{{\text{cos}\theta }}{{\text{sin}\theta }}}}{{\text{sin}\theta \text{cos}\theta }}

 

=\frac{1}{{\text{co}{{\text{s}}^{2}}\theta }}-\frac{1}{{\text{si}{{\text{n}}^{2}}\theta }}

 

=\text{se}{{\text{c}}^{2}}\theta -\text{cose}{{\text{c}}^{2}}\theta =\text{ }\!\!~\!\!\text{ R}.\text{H}.\text{S}.

 

(iv) \text{L}\text{.H}\text{.S}\text{.}~=\frac{{\text{cosec}\theta }}{{\text{cot}\theta +\text{tan}\theta }}

 

=\frac{{\frac{1}{{\text{sin}\theta }}}}{{\frac{{\text{cos}\theta }}{{\text{sin}\theta }}+\frac{{\text{sin}\theta }}{{\text{cos}\theta }}}}

 

=\frac{1}{{\frac{{\text{sin}\theta }}{{\text{co}{{\text{s}}^{2}}\theta +\text{si}{{\text{n}}^{2}}\theta }}}}~=\frac{1}{{\text{sin}\theta }}\times \frac{{\text{sin}\theta \text{cos}\theta }}{1}

 

=\text{cos}\theta =\text{ }\!\!~\!\!\text{ R}.\text{H}.\text{S}.

 

Example 3. Prove that:


(i) \sqrt{{\frac{{1+\text{sin}A}}{{1-\text{sin}A}}}}=\text{sec}A+\text{tan}A


(ii) \sqrt{{\frac{{1-\text{cos}\theta }}{{1+\text{cos}\theta }}}}=\text{cosec}\theta -\text{cot}\theta


Solution. (i) L.H.S. =\sqrt{{\frac{{1+\text{sinA}}}{{1-\text{sinA}}}}}

 

=\frac{{\sqrt{{1+\text{sinA}}}}}{{\sqrt{{1-\text{sinA}}}}}\times \frac{{\sqrt{{1+\text{sinA}}}}}{{\sqrt{{1+\text{sinA}}}}}[Rationalism the numerator]

 

=\frac{{1+\text{sinA}}}{{\sqrt{{\left( {1-\text{sinA}} \right)\left( {1+\text{sinA}} \right)}}}}

 

=\frac{{1+\text{sinA}}}{{\sqrt{{1-\text{si}{{\text{n}}^{2}}\text{ }\!\!~\!\!\text{ A}}}}}

 

=\frac{{1+\text{sinA}}}{{\sqrt{{\text{co}{{\text{s}}^{2}}\text{ }\!\!~\!\!\text{ A}}}}}=\frac{{1+\text{sinA}}}{{\text{cosA}}}

 

\begin{array}{*{20}{r}} {} & ~ \\ {} & {} \\ {} & {~=\frac{1}{{\text{cosA}}}+\frac{{\text{sinA}}}{{\text{cosA}}}=\text{secA}+\text{tanA}=\text{R}.\text{H}.\text{S}.} \end{array}

 

(ii)

\text{ }\!\!~\!\!\text{ L}\text{.H}\text{.S}\text{. }\!\!~\!\!\text{ =}\frac{{\sqrt{{1-\text{cos}\theta }}}}{{\sqrt{{1+\text{cos}\theta }}}}

 

=\frac{{\sqrt{{1-\text{cos}\theta }}}}{{\sqrt{{1+\text{cos}\theta }}}}\times \frac{{\sqrt{{1-\text{cos}\theta }}}}{{\sqrt{{1-\text{cos}\theta }}}}

 

[Rationalism the numerator]

 

=\frac{{1-\text{cos}\theta }}{{\sqrt{{1-\text{co}{{\text{s}}^{2}}\theta }}}}=\frac{{1-\text{cos}\theta }}{{\text{sin}\theta }}

 

\begin{array}{*{20}{r}} {} & {} \\ {} & {~=\frac{1}{{\text{sin}\theta }}-\frac{{\text{cos}\theta }}{{\text{sin}\theta }}=\text{cosec}\theta -\text{cot}\theta =\text{ }\!\!~\!\!\text{ R}.\text{H}.\text{S}.\text{ }\!\!~\!\!\text{ }} \end{array}

 

Example 4. Prove the following :


(i) \frac{{1-\text{cos}\theta }}{{\text{sin}\theta }}=\frac{{\text{sin}\theta }}{{1+\text{cos}\theta }}


(ii) \frac{{\text{sec}\theta -\text{tan}\theta }}{{\text{sec}\theta +\text{tan}\theta }}=1-2\text{sec}\theta \text{tan}\theta +2\text{ta}{{\text{n}}^{2}}\theta


Solution.

\text{(i) }\!\!~\!\!\text{ L}\text{.H}\text{.S}=\frac{{1-\text{cos}\theta }}{{\text{sin}\theta }} =\frac{{1-\text{cos}\theta }}{{\text{sin}\theta }}\times \frac{{1+\text{cos}\theta }}{{1+\text{cos}\theta }}

 

=\frac{{1-\text{co}{{\text{s}}^{2}}\theta }}{{\text{sin}\theta \left( {1+\text{cos}\theta } \right)}}=\frac{{\text{si}{{\text{n}}^{2}}\theta }}{{\text{sin}\theta \left( {1+\text{cos}\theta } \right)}}

 

=\frac{{\text{sin}\theta }}{{1+\text{cos}\theta }}=\text{ }\!\!~\!\!\text{ R}.\text{H}.\text{S}.\text{ }\!\!~\!\!\text{ }

 

(ii) L.H.S. =\frac{{\text{sec}\theta -\text{tan}\theta }}{{\text{sec}\theta +\text{tan}\theta }}

 

=\frac{{\text{sec}\theta -\text{tan}\theta }}{{\text{sec}\theta +\text{tan}\theta }}\times \frac{{\text{sec}\theta -\text{tan}\theta }}{{\text{sec}\theta -\text{tan}\theta }}


=\frac{{{{{(\text{sec}\theta -\text{tan}\theta )}}^{2}}}}{{\text{se}{{\text{c}}^{2}}\theta -\text{ta}{{\text{n}}^{2}}\theta }}

 

=\frac{{\text{se}{{\text{c}}^{2}}\theta +\text{ta}{{\text{n}}^{2}}\theta -2\text{sec}\theta \text{tan}\theta }}{1}

 

=1+\text{ta}{{\text{n}}^{2}}\theta +\text{ta}{{\text{n}}^{2}}\theta -2\text{sec}\theta \text{tan}\theta

 

=1-2\text{sec}\theta \text{tan}\theta +2\text{ta}{{\text{n}}^{2}}\theta = R.H.S.


Example 5. Prove the following:


(i) \text{se}{{\text{c}}^{4}}\theta -\text{se}{{\text{c}}^{2}}\theta =\text{ta}{{\text{n}}^{4}}\theta +\text{ta}{{\text{n}}^{2}}\theta


(ii) 2\text{se}{{\text{c}}^{2}}\theta -\text{se}{{\text{c}}^{4}}\theta -2\text{cose}{{\text{c}}^{2}}\theta +\text{cose}{{\text{c}}^{4}}\theta =\text{co}{{\text{t}}^{4}}\theta -\text{ta}{{\text{n}}^{4}}\theta


(iii) \text{si}{{\text{n}}^{\text{*}}}\theta -\text{co}{{\text{s}}^{8}}\theta =\left( {\text{si}{{\text{n}}^{2}}\theta -\text{co}{{\text{s}}^{2}}\theta } \right)\left( {1-2\text{si}{{\text{n}}^{2}}\theta \text{co}{{\text{s}}^{2}}\theta } \right)


(iv) \text{se}{{\text{c}}^{6}}0-\text{ta}{{\text{n}}^{6}}\theta =3\text{ta}{{\text{n}}^{2}}\theta \text{se}{{\text{c}}^{2}}\theta +1


(v) 2\left( {\text{si}{{\text{n}}^{6}}\theta +\text{co}{{\text{s}}^{6}}\theta } \right)-3\left( {\text{si}{{\text{n}}^{4}}\theta +\text{co}{{\text{s}}^{4}}\theta } \right)+1=0.


Solution. (i) L.H.S. =\text{se}{{\text{c}}^{4}}\theta -\text{se}{{\text{c}}^{2}}\theta

 

=\text{se}{{\text{c}}^{2}}\theta \left( {\text{se}{{\text{c}}^{2}}\theta -1} \right)

 

\begin{array}{*{20}{r}} {} & {} \\ {} & {~=\left( {1+\text{ta}{{\text{n}}^{2}}\theta } \right)\text{ta}{{\text{n}}^{2}}\theta =\text{ta}{{\text{n}}^{2}}\theta +\text{ta}{{\text{n}}^{4}}\theta =\text{ }\!\!~\!\!\text{ R}.\text{H}.\text{S}.\text{ }\!\!~\!\!\text{ }} \end{array}

 

\text{ }\!\!~\!\!\text{ (ii) }\!\!~\!\!\text{ L}\text{.H}\text{.S}\text{. }\!\!~\!\!\text{ =}2\text{se}{{\text{c}}^{2}}\theta -\text{se}{{\text{c}}^{4}}\theta -2\text{cose}{{\text{c}}^{2}}\theta +\text{cose}{{\text{c}}^{4}}\theta

 

=2\left( {1+\text{ta}{{\text{n}}^{2}}\theta } \right)-{{\left( {1+\text{ta}{{\text{n}}^{2}}\theta } \right)}^{2}}-2\left( {1+\text{co}{{\text{t}}^{2}}\theta } \right)+{{\left( {1+\text{co}{{\text{t}}^{2}}\theta } \right)}^{2}}

 

=\text{ }\!\!~\!\!\text{ }2+2\text{ta}{{\text{n}}^{2}}\theta -\left( {1+\text{ta}{{\text{n}}^{4}}\theta +2\text{ta}{{\text{n}}^{2}}\theta } \right)-2-2\text{co}{{\text{t}}^{2}}\theta +1

 

=\text{ }\!\!~\!\!\text{ }2+2\text{ta}{{\text{n}}^{2}}\theta -1-\text{ta}{{\text{n}}^{4}}\theta +2\text{co}{{\text{t}}^{2}}\theta

 

=\text{ }\!\!~\!\!\text{ co}{{\text{t}}^{4}}\theta -\text{ta}{{\text{n}}^{4}}\theta =\text{ }\!\!~\!\!\text{ R}.\text{H}.\text{S}

 

\text{(iii) }\!\!~\!\!\text{ L}\text{.H}\text{.S}\text{. }\!\!~\!\!\text{ = }\!\!~\!\!\text{ si}{{\text{n}}^{8}}\theta -\text{co}{{\text{s}}^{8}}\theta =\left( {\text{si}{{\text{n}}^{4}}\theta -\text{co}{{\text{s}}^{4}}\theta } \right)\left( {\text{si}{{\text{n}}^{4}}\theta +\text{co}{{\text{s}}^{4}}\theta } \right)

 

=~\left[ {\left( {\text{si}{{\text{n}}^{2}}\theta +\text{co}{{\text{s}}^{2}}\theta } \right)\left( {\text{si}{{\text{n}}^{2}}\theta -\text{co}{{\text{s}}^{2}}\theta } \right)} \right]\left[ {{{{\left( {\text{si}{{\text{n}}^{2}}\theta +\text{co}{{\text{s}}^{2}}\theta } \right)}}^{2}}} \right.

 

=~\left( {\text{si}{{\text{n}}^{2}}\theta -\text{co}{{\text{s}}^{2}}\theta } \right)\left( {1-2\text{si}{{\text{n}}^{2}}\theta \text{co}{{\text{s}}^{2}}\theta } \right)=\text{ }\!\!~\!\!\text{ R}.\text{H}.\text{S}.

 

\text{(iv) }\!\!~\!\!\text{ L}\text{.H}\text{.S}\text{. }\!\!~\!\!\text{ = }\!\!~\!\!\text{ se}{{\text{c}}^{6}}\theta -\text{ta}{{\text{n}}^{6}}\theta ={{\left( {\text{se}{{\text{c}}^{2}}\theta } \right)}^{3}}-{{\left( {\text{ta}{{\text{n}}^{2}}\theta } \right)}^{3}}

 

=~\left( {\text{se}{{\text{c}}^{2}}\theta -\text{ta}{{\text{n}}^{2}}\theta } \right)\left( {\text{se}{{\text{c}}^{4}}\theta +\text{se}{{\text{c}}^{2}}\theta \text{ta}{{\text{n}}^{2}}\theta +\text{ta}{{\text{n}}^{4}}\theta } \right)

 

=~\left( {\text{se}{{\text{c}}^{2}}\theta -\text{ta}{{\text{n}}^{2}}\theta } \right)\left[ {{{{\left( {\text{se}{{\text{c}}^{2}}\theta -\text{ta}{{\text{n}}^{2}}\theta } \right)}}^{2}}+\left( {3\text{se}{{\text{c}}^{2}}\theta \text{ta}{{\text{n}}^{2}}\theta } \right)} \right]

 

=\text{ }\!\!~\!\!\text{ }1+3\text{se}{{\text{c}}^{2}}\theta \text{ta}{{\text{n}}^{2}}\theta =\text{ }\!\!~\!\!\text{ R}.\text{H}.\text{S}.\text{ }\!\!~\!\!\text{ }\!\!~\!\!\text{ }\left[ {\because \text{se}{{\text{c}}^{2}}\theta -\text{ta}{{\text{n}}^{2}}\theta =1} \right]

 

=2\left( {\text{co}{{\text{s}}^{6}}\theta +\text{si}{{\text{n}}^{6}}\theta } \right)-3\left( {\text{co}{{\text{s}}^{4}}\theta +\text{si}{{\text{n}}^{4}}\theta } \right)+1

 

=\text{ }\!\!~\!\!\text{ }2\left[ {{{{\left( {\text{co}{{\text{s}}^{2}}\theta +\text{si}{{\text{n}}^{2}}\theta } \right)}}^{3}}-3\text{co}{{\text{s}}^{2}}\theta \text{si}{{\text{n}}^{2}}\theta \left( {\text{co}{{\text{s}}^{2}}\theta +\text{si}{{\text{n}}^{2}}\theta } \right)} \right]

 

\left. {=\text{ }\!\!~\!\!\text{ }-3\left[ {{{{\left( {\text{co}{{\text{s}}^{2}}\theta +\text{si}{{\text{n}}^{2}}\theta } \right)}}^{2}}-2\text{co}{{\text{s}}^{2}}\theta \text{si}{{\text{n}}^{2}}\theta } \right)} \right]+1

 

=\text{ }\!\!~\!\!\text{ }2\left[ {1-3\text{co}{{\text{s}}^{2}}\theta \text{si}{{\text{n}}^{2}}\theta } \right]-3\left[ {1-2\text{co}{{\text{s}}^{2}}\theta \text{si}{{\text{n}}^{2}}\theta } \right]+1

 

\left[ {\because \text{si}{{\text{n}}^{2}}\theta +\text{co}{{\text{s}}^{2}}\theta =1} \right]

 

=\text{ }\!\!~\!\!\text{ }2-6\text{co}{{\text{s}}^{2}}\theta \text{si}{{\text{n}}^{2}}\theta -3+6\text{si}{{\text{n}}^{2}}\theta \text{co}{{\text{s}}^{2}}\theta +1=0=\text{ }\!\!~\!\!\text{ R}.\text{H}.\text{S}.

 

Example 6. Prove the following :


(i) \frac{{\text{cos}x}}{{1-\text{sin}x}}+\frac{{1-\text{sin}x}}{{\text{cos}x}}=2\text{sec}x


(ii) \frac{{\text{cot}A+\text{tan}B}}{{\text{cot}B+\text{tan}A}}=\text{cot}A\text{tan}B


(iii) \frac{{\text{cos}\theta }}{{1-\text{tan}\theta }}+\frac{{\text{sin}\theta }}{{1-\text{cot}\theta }}=\text{cos}\theta +\text{sin}\theta .


(iv) \frac{1}{{\text{sec}\theta -\text{tan}\theta }}-\frac{1}{{\text{cos}\theta }}=\frac{1}{{\text{cos}\theta }}-\frac{1}{{\text{sec}\theta +\text{tan}\theta }}


Solution. (i) L.H.S. =\frac{{\text{cos}x}}{{1-\text{sin}x}}+\frac{{1-\text{sin}x}}{{\text{cos}x}}

 

=\frac{{\text{co}{{\text{s}}^{2}}x+{{{(1-\text{sin}x)}}^{2}}}}{{\text{cos}x\left( {1-\text{sin}x} \right)}}=\frac{{\text{co}{{\text{s}}^{2}}x+1+\text{si}{{\text{n}}^{2}}x-2\text{sin}x}}{{\text{cos}x\left( {1-\text{sin}x} \right)}}

 

=\frac{{\text{co}{{\text{s}}^{2}}x+{{{(1-\text{sin}x)}}^{2}}}}{{\text{cos}x\left( {1-\text{sin}x} \right)}}=\frac{{\text{co}{{\text{s}}^{2}}x+1+\text{si}{{\text{n}}^{2}}x-2\text{sin}x}}{{\text{cos}x\left( {1-\text{sin}x} \right)}}

 

=\frac{{1+\left( {\text{si}{{\text{n}}^{2}}x+\text{co}{{\text{s}}^{2}}x} \right)-2\text{sin}x}}{{\text{cos}x\left( {1-\text{sin}x} \right)}}=\frac{{2-2\text{sin}x}}{{\text{cos}x\left( {1-\text{sin}x} \right)}}

 

=\frac{{2\left( {1-\text{sin}x} \right)}}{{\text{cos}x\left( {1-\text{sin}x} \right)}}=\frac{2}{{\text{cos}x}}=2\text{sec}x=\text{ }\!\!~\!\!\text{ R}.\text{H}.\text{S}.

 

\text{(ii) }\!\!~\!\!\text{ L}\text{.H}\text{.S}\text{.}~=\frac{{\text{cotA}+\text{tanB}}}{{\text{cotB}+\text{tanA}}}\text{ }\!\!~\!\!\text{ }

 

=\frac{{\frac{1}{{\frac{{\text{tanA}}}{1}+\text{tanB}}}\text{tanB}+\frac{{1+\text{tanAtanB}}}{{\frac{{\text{tanA}}}{{1+\text{tanAtanB}}}}}}}{{\text{tanB}}}

 

=\frac{{\text{tanB}}}{{\text{tanA}}}=\frac{1}{{\text{tanA}}}\cdot \text{tanB}=\text{cot}\mathbf{A}\text{tan}\mathbf{B}=\text{ }\!\!~\!\!\text{ R}.\text{H}.\text{S}.\text{ }\!\!~\!\!\text{ }

 

\text{(iii) }\!\!~\!\!\text{ L}\text{.H}\text{.S}~=\frac{{\text{cos}\theta }}{{1-\text{tan}\theta }}+\frac{{\text{sin}\theta }}{{1-\text{cot}\theta }}\text{.}

 

=\frac{{\text{cos}\theta }}{{1-\frac{{\text{sin}\theta }}{{\text{cos}\theta }}}}+\frac{{\text{sin}\theta }}{{1-\frac{{\text{cos}\theta }}{{\text{sin}\theta }}}}

 

=\frac{{\text{co}{{\text{s}}^{2}}\theta }}{{\text{cos}\theta -\text{sin}\theta }}+\frac{{\text{si}{{\text{n}}^{2}}\theta }}{{\text{sin}\theta -\text{cos}\theta }}

 

=\frac{{\text{co}{{\text{s}}^{2}}\theta }}{{\text{cos}\theta -\text{sin}\theta }}-\frac{{\text{si}{{\text{n}}^{2}}\theta }}{{\text{cos}\theta -\text{sin}\theta }}=\frac{{\text{co}{{\text{s}}^{2}}\theta -\text{si}{{\text{n}}^{2}}\theta }}{{\text{cos}\theta -\text{sin}\theta }}

 

=\frac{{\left( {\text{cos}\theta -\text{sin}\theta } \right)\left( {\text{cos}\theta +\text{sin}\theta } \right)}}{{\text{cos}\theta -\text{sin}\theta }}=\text{cos}\theta +\text{sin}\theta = R.H.S.

 


(iv) \frac{1}{{\text{sec}\theta -\text{tan}\theta }}-\frac{1}{{\text{cos}\theta }}=\frac{1}{{\text{cos}\theta }}-\frac{1}{{\text{sec}\theta +\text{tan}\theta }}


\frac{1}{{\text{sec}\theta -\text{tan}\theta }}+\frac{1}{{\text{sec}\theta +\text{tan}\theta }}=\frac{2}{{\text{cos}\theta }}

 

or \text{ }\!\!~\!\!\text{ } L.H.S. =\frac{1}{{\text{sec}\theta -\text{tan}\theta }}+\frac{1}{{\text{sec}\theta +\text{tan}\theta }}


=\frac{{\text{sec}\theta +\text{tan}\theta +\text{sec}\theta -\text{tan}\theta }}{{\left( {\text{sec}\theta -\text{tan}\theta } \right)\left( {\text{sec}\theta +\text{tan}\theta } \right)}}

 

=\frac{{2\text{sec}\theta }}{{\text{se}{{\text{c}}^{2}}\theta -\text{ta}{{\text{n}}^{2}}\theta }}=\frac{{2\text{sec}\theta }}{1}=2\text{sec}\theta =\frac{2}{{\text{cos}\theta }}= R.H.S.

Add a Comment

Your email address will not be published. Required fields are marked *